7 M ay 2 00 4 Differentiability of the stable norm in codimension one Franz Auer
نویسنده
چکیده
The real homology of a compact, n-dimensional Riemannian manifold M is naturally endowed with the stable norm. The stable norm of a homology class is the minimal Riemannian volume of its representatives. If M is orientable the stable norm on Hn−1(M,R) is a homogenized version of the Riemannian (n−1)-volume. We study the differentiability properties of the stable norm at points α ∈ Hn−1(M,R). They depend on the position of α with respect to the integer lattice Hn−1(M,Z) in Hn−1(M,R). In particular, we show that the stable norm is differentiable at α if α is totally irrational.
منابع مشابه
Differentiability of the stable norm in codimension one Franz Auer
The real homology of a compact, n-dimensional Riemannian manifold M is naturally endowed with the stable norm. The stable norm of a homology class is the minimal Riemannian volume of its representatives. If M is orientable the stable norm on Hn−1(M,R) is a homogenized version of the Riemannian (n−1)-volume. We study the differentiability properties of the stable norm at points α ∈ Hn−1(M,R). Th...
متن کامل2 00 4 Differentiability of the stable norm in codimension one
The real homology of a compact, n-dimensional Riemannian manifold M is naturally endowed with the stable norm. The stable norm of a homology class is the minimal Riemannian volume of its representatives. If M is orientable the stable norm on Hn−1(M,R) is a homogenized version of the Riemannian (n−1)-volume. We study the differentiability properties of the stable norm at points α ∈ Hn−1(M,R). Th...
متن کاملDifferentiability of the stable norm in codimension one Franz
The real homology of a compact, n-dimensional Riemannian manifold M is naturally endowed with the stable norm. The stable norm of a homology class is the minimal Riemannian volume of its representatives. If M is orientable the stable norm on Hn−1(M,R) is a homogenized version of the Riemannian (n−1)-volume. We study the differentiability properties of the stable norm at points α ∈ Hn−1(M,R). Th...
متن کاملar X iv : 0 80 4 . 14 18 v 2 [ m at h . D G ] 2 7 M ay 2 00 8 SMOOTH YAMABE INVARIANT AND SURGERY
We prove a surgery formula for the smooth Yamabe invariant σ(M) of a compact manifold M . Assume that N is obtained from M by surgery of codimension at least 3. We prove the existence of a positive constant Λn, depending only on the dimension n of M , such that σ(N) ≥ min{σ(M),Λn}.
متن کاملar X iv : 0 81 0 . 01 29 v 2 [ m at h . A G ] 2 7 M ay 2 00 9 Varieties swept out by grassmannians of lines
We classify complex projective varieties of dimension 2r ≥ 8 swept out by a family of codimension two grassmannians of lines G(1, r). They are either fibrations onto normal surfaces such that the general fibers are isomorphic to G(1, r) or the grassmannian G(1, r +1). The cases r = 2 and r = 3 are also considered in the more general context of varieties swept out by codimension two linear space...
متن کامل